Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.07.22283175

ABSTRACT

Background The role of thromboprophylaxis in the post-acute phase of COVID-19 is uncertain due to conflicting results from randomised controlled trials and observational studies. We aimed to determine the effectiveness of post-hospital apixaban in reducing the rate of death and hospital readmission of hospitalised adults with COVID-19. Methods HEAL COVID is an adaptive randomised open label multicentre platform trial recruiting participants from National Health Service Hospitals in the United Kingdom. Here we report the preliminary results of apixaban comparison of HEAL-COVID. Participants with a hospital admission related to confirmed COVID-19 and an expected date of discharge in the subsequent five days were randomised to either apixaban 2.5 mg twice daily or standard care (no anticoagulation) for 14 days. The primary outcome was hospital free survival at 12 months obtained through routine data sources. The trial was prospectively registered with ISRCTN (15851697) and Clincialtrials.gov (NCT04801940). Findings Between 19 May 2021 and 21 November 2022, 402 participants from 109 sites were randomised to apixaban and 399 to standard care. Seven participants withdrew from the apixaban group and one from the standard care group. Analysis was undertaken on an intention-to-treat basis. The apixaban arm was stopped on the recommendation of the oversight committees following an interim analysis due to no indication of benefit. Of the 402 participants randomised to apixaban, 117 experienced death or rehospitalisation during a median follow-up of 344.5 days (IQR 125 to 365), and 123 participants receiving standard care experienced death or rehospitalisation during a median follow-up of 349 days (IQR 124 to 365). There was no statistical difference in the rate of death and rehospitalisation (HR: 0.96 99%CI 0.69-1.34; p=0.75). Three participants in the apixaban arm experienced clinically significant bleeding during treatment. Interpretation Fourteen days of post-hospital anticoagulation with the direct oral anticoagulant apixaban did not reduce the rate of death or rehospitalisation of adults hospitalised with COVID-19. These data do not support the use of prophylactic post-hospital anticoagulation in adults with COVID-19. Funding HEAL-COVID is funded by the National Institute for Health and Care Research [NIHR133788] and the NIHR Cambridge Biomedical Research Centre [ BRC-1215-20014*].


Subject(s)
COVID-19 , Hemorrhage , Death
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.09.20209957

ABSTRACT

Prognostic models to predict the risk of clinical deterioration in acute COVID-19 are required to inform clinical management decisions. Among 75,016 consecutive adults across England, Scotland and Wales prospectively recruited to the ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC4C) study, we developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) using 11 routinely measured variables. We used internal-external cross-validation to show consistent measures of discrimination, calibration and clinical utility across eight geographical regions. We further validated the final model in held-out data from 8,252 individuals in London, with similarly consistent performance (C-statistic 0.77 (95% CI 0.75 to 0.78); calibration-in-the-large 0.01 (-0.04 to 0.06); calibration slope 0.96 (0.90 to 1.02)). Importantly, this model demonstrated higher net benefit than using other candidate scores to inform decision-making. Our 4C Deterioration model thus demonstrates unprecedented clinical utility and generalisability to predict clinical deterioration among adults hospitalised with COVID-19.


Subject(s)
COVID-19 , Death
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.30.20165464

ABSTRACT

ObjectivesTo develop and validate a pragmatic risk score to predict mortality for patients admitted to hospital with covid-19. DesignProspective observational cohort study: ISARIC WHO CCP-UK study (ISARIC Coronavirus Clinical Characterisation Consortium [4C]). Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited between 21 May and 29 June 2020. Setting260 hospitals across England, Scotland, and Wales. ParticipantsAdult patients ([≥]18 years) admitted to hospital with covid-19 admitted at least four weeks before final data extraction. Main outcome measuresIn-hospital mortality. ResultsThere were 34 692 patients included in the derivation dataset (mortality rate 31.7%) and 22 454 in the validation dataset (mortality 31.5%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea, and C-reactive protein (score range 0-21 points). The 4C risk stratification score demonstrated high discrimination for mortality (derivation cohort: AUROC 0.79; 95% CI 0.78 - 0.79; validation cohort 0.78, 0.77-0.79) with excellent calibration (slope = 1.0). Patients with a score [≥]15 (n = 2310, 17.4%) had a 67% mortality (i.e., positive predictive value 67%) compared with 1.0% mortality for those with a score [≤]3 (n = 918, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (AUROC range 0.60-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73). ConclusionsWe have developed and validated an easy-to-use risk stratification score based on commonly available parameters at hospital presentation. This outperformed existing scores, demonstrated utility to directly inform clinical decision making, and can be used to stratify inpatients with covid-19 into different management groups. The 4C Mortality Score may help clinicians identify patients with covid-19 at high risk of dying during current and subsequent waves of the pandemic. Study registrationISRCTN66726260


Subject(s)
COVID-19
4.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3618215

ABSTRACT

Background: Reports of ethnic inequalities in COVID-19 outcomes are conflicting and the reasons for any differences in outcomes are unclear. We investigated ethnic inequalities in critical care admission patterns, the need for invasive mechanical ventilation (IMV), and in-hospital mortality, among hospitalised patients with COVID-19. Methods: We undertook a prospective cohort study in which dedicated research staff recruited hospitalised patients with suspected/confirmed COVID-19 from 260 hospitals across England, Scotland and Wales, collecting data directly and from records between 6th February and 8th May 2020 with follow-up until 22nd May 2020. Analysis used hierarchical regression models accounting for confounding, competing risks, and clustering of patients in hospitals. Potential mediators for death were explored with a three-way decomposition mediation analysis. Findings: Of 34,986 patients enrolled, 30,693 (88%) had ethnicity recorded: South Asian (1,388, 5%), East Asian (266, 1%), Black (1,094, 4%), Other Ethnic Minority (2,398, 8%) (collectively Ethnic Minorities), and White groups (25,547, 83%). Ethnic Minorities were younger and more likely to have diabetes (type 1/type 2) but had fewer other comorbidities such as chronic heart disease or dementia than the White group. No difference was seen between ethnic groups in the time from symptom onset to hospital admission, nor in illness severity at admission. Critical care admission was more common in South Asian (odds ratio 1.28, 95% confidence interval 1.09 to 1.52), Black (1.36, 1.14 to 1.62), and Other Ethnic Minority (1.29, 1.13 to 1.47) groups compared to the White group, after adjusting for age, sex and location. This was broadly unchanged after adjustment for deprivation and comorbidities. Patterns were similar for IMV. Higher adjusted mortality was seen in the South Asian (hazard ratio 1.19, 1.05 to 1.36), but not East Asian (1.00, 0.74 to 1.35), Black (1.05, 0.91 to 1.26) or Other Ethnic Minority (0.99, 0.89 to 1.10) groups, compared to the White group. 18% (95% CI, 9% to 56%) of the excess mortality in South Asians was mediated by pre-existing diabetes. Interpretation: Ethnic Minorities in hospital with COVID-19 were more likely to be admitted to critical care and receive IMV than Whites, despite similar disease severity on admission, similar duration of symptoms, and being younger with fewer comorbidities. South Asians are at greater risk of dying, due at least in part to a higher prevalence of pre-existing diabetes. Trial Registration: The study was registered at https://www.isrctn.com/ISRCTN66726260. Funding Statement: This work is supported by grants from: the National Institute for Health Research [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059] and by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford [NIHR award 200907], Wellcome Trust and Department for International Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation [OPP1209135], and Liverpool Experimental Cancer Medicine Centre for providing infrastructure support for this research (Grant Reference: C18616/A25153). JSN-V-T is seconded to the Department of Health and Social Care, England (DHSC).Declaration of Interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: AB Docherty reports grants from Department of Health and Social Care, during the conduct of the study; grants from Wellcome Trust, outside the submitted work; CA Green reports grants from DHSC National Institute of Health Research UK, during the conduct of the study; PW Horby reports grants from Wellcome Trust / Department for International Development / Bill and Melinda Gates Foundation, grants from NIHR , during the conduct of the study; JS Nguyen-Van-Tam reports grants from Department of Health and Social Care, England, during the conduct of the study; and is seconded to the Department of Health and Social Care, England (DHSC); PJM Openshaw reports personal fees from consultancies and from European Respiratory Society; grants from MRC, MRC Global Challenge Research Fund, EU, NIHR Biomedical Research Centre, MRC/GSK, Wellcome Trust, NIHR (HPRU in Respiratory Infection), and NIHR Senior Investigator outside the submitted work. His role as President of the British Society for Immunology was unpaid but travel and accommodation at some meetings was provided by the Society. JK Baillie reports grants from Medical Research Council UK; MG Semple reports grants from DHSC National Institute of Health Research UK, grants from Medical Research Council UK, grants from Health Protection Research Unit in Emerging & Zoonotic Infections, University of Liverpool, during the conduct of the study; other from Integrum Scientific LLC, Greensboro, NC, USA, outside the submitted work. EM Harrison, H Ardwick, J Dunning, R Pius, L Norman, KA Holden, JM Read, G Carson, L Merson, J Lee, D Plotkin, L Sigfrid, S Halpin, C Jackson, and C Gamble, all declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; and no other relationships or activities that could appear to have influenced the submitted work.Ethics Approval Statement: Ethical approval was given by the South Central – Oxford C Research Ethics Committee in England (Ref: 13/SC/0149), and by the Scotland A Research Ethics Committee (Ref: 20/SS/0028).


Subject(s)
Dementia , COVID-19 , Pyruvate Carboxylase Deficiency Disease , Heart Diseases , Hemoglobin SC Disease
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.23.20076042

ABSTRACT

Objective: To characterize the clinical features of patients with severe COVID-19 in the UK. Design: Prospective observational cohort study with rapid data gathering and near real-time analysis, using a pre-approved questionnaire adopted by the WHO. Setting: 166 UK hospitals between 6th February and 18th April 2020. Participants: 16,749 people with COVID-19. Interventions: No interventions were performed, but with consent samples were taken for research purposes. Many participants were co-enrolled in other interventional studies and clinical trials. Results: The median age was 72 years [IQR 57, 82; range 0, 104], the median duration of symptoms before admission was 4 days [IQR 1,8] and the median duration of hospital stay was 7 days [IQR 4,12]. The commonest comorbidities were chronic cardiac disease (29%), uncomplicated diabetes (19%), non-asthmatic chronic pulmonary disease (19%) and asthma (14%); 47% had no documented reported comorbidity. Increased age and comorbidities including obesity were associated with a higher probability of mortality. Distinct clusters of symptoms were found: 1. respiratory (cough, sputum, sore throat, runny nose, ear pain, wheeze, and chest pain); 2. systemic (myalgia, joint pain and fatigue); 3. enteric (abdominal pain, vomiting and diarrhoea). Overall, 49% of patients were discharged alive, 33% have died and 17% continued to receive care at date of reporting. 17% required admission to High Dependency or Intensive Care Units; of these, 31% were discharged alive, 45% died and 24% continued to receive care at the reporting date. Of those receiving mechanical ventilation, 20% were discharged alive, 53% died and 27% remained in hospital. Conclusions: We present the largest detailed description of COVID-19 in Europe, demonstrating the importance of pandemic preparedness and the need to maintain readiness to launch research studies in response to outbreaks. Trial documentation: Available at https://isaric4c.net/protocols . Ethical approval in England and Wales (13/SC/0149), and Scotland (20/SS/0028). ISRCTN (pending).


Subject(s)
Abdominal Pain , Pain , Pulmonary Disease, Chronic Obstructive , Chest Pain , Diabetes Mellitus , Arthralgia , Asthma , Obesity , Vomiting , Myalgia , COVID-19 , Heart Diseases , Fatigue , Diarrhea
SELECTION OF CITATIONS
SEARCH DETAIL